Norm-based behaviour modification in BDI agents

Felipe Meneguzzi
King’s College London
Department of Computer Science
London, United Kingdom
felipe.meneguzzi@kcl.ac.uk

ABSTRACT

While there has been much work on developing frameworks and
models of norms and normative systems, consideration of the im-
pact of norms on the practical reasoning of agents has attracted less
attention. The problem is that traditional agent architectures and
their associated languages provide no mechanism to adapt an agent
at runtime to norms constraining their behaviour. This is important
because if BDI-type agents are to operate in open environments,
they need to adapt to changes in the norms that regulate such en-
vironments. In response, in this paper we provide a technique to
extend BDI agent languages, by enabling them to enact behaviour
modification at runtime in response to newly accepted norms. Our
solution consists of creating new plans to comply with obligations
and suppressing the execution of existing plans that violate prohi-
bitions. We demonstrate the viability of our approach through an
implementation of our solution in the AgentSpeak(L) language.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Design, Languages

Keywords
Norms, BDI

1. INTRODUCTION

Systems composed of heterogeneous autonomous agents require
some form of societal control to ensure a desirable social order in
which agents work together effectively. For many, norms are the
mechanism of choice to address this concern in multiagent soci-
eties and ensure order and predictability [1]. Such norms define
standards of behaviour that are acceptable in a society, indicating
desirable behaviours that should be carried out, as well as undesir-
able behaviours that should be avoided. Normative systems thus
rely on a representation of obligations, prohibitions and permis-
sions that ensure that complying agents act within some predefined
bounds. Although deontic concepts have received much attention
from philosophy [12, 5], and more recently computer science [7, 8],
we must provide a simple definition for the concepts we use in this

Cite as: Norm-Based Behaviour Modification in Bdi Agents, Felipe
Meneguzzi, Michael Luck, Proc. of 8th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and
Castelfranchi (eds.), May, 10-15, 2009, Budapest, Hungary, pp. 177-184
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

177

Michael Luck
King’s College London
Department of Computer Science
London, United Kingdom
michael.luck@kcl.ac.uk

paper. Therefore, we take an obligation to be a positive constraint
on an agent, indicating that it must act to accomplish something in
the world [10]; permissions to be overriders of obligations, under-
cutting them and freeing an agent from being bound to a particular
constraint;and prohibitions to be negative constraints on an agent,
indicating that it must refrain from acting in a particular way [10].

The specification and maintenance of normative systems has been
the focus of recent research in agents, for example in the context of
electronic institutions [1]. However, these efforts have been largely
at the macro level, such as managing global sets of norms in an
environment [14] and monitoring an agent’s actions within a soci-
ety for compliance [4], among others. By contrast, little work has
been done on dealing with the desired effects of norms at the level
of an individual agent, and traditional agent architectures are gen-
erally lacking in mechanisms to adapt agents to comply with newly
perceived norms at runtime.

In this paper we develop a solution that enables agents to pro-
cess norms and modify their behaviour so as to comply with these
norms, should they choose to do so. In order to accomplish this, we
extend a BDI language allowing it to modify plans at runtime in re-
action to newly accepted norms. Our main contribution is the intro-
duction of plan manipulation strategies to enable reasoning about
norms and to ensure compliance with newly accepted norms.

The paper is structured as follows: in Section 2 we outline our
understanding of norms in agent languages; in Section 3 we de-
scribe our behaviour modification algorithms; in Section 4 we de-
scribe an AgentSpeak(L)-based implementation of our solution us-
ing a meta-reasoning toolkit; and in Section 5 we summarise rele-
vant related work and conclude the paper.

2. NORMS IN AGENT LANGUAGES

2.1 Norm Representation

In order to add normative processing to an agent language, it is
necessary to provide some sort of representation for norms. Norms
are often situated within the context of an electronic institution,
making norms part of the environment [14]. Here, however, we are
not concerned with the issues of electronic institutions or the mod-
elling of a normative environment, but with the aspects that arise
after norms have been perceived by an agent. We are concerned
with the operational reasoning of agents, so our focus is on the con-
sequences of norm compliance on an agent reasoning process. It is
important to note that there are two major perspectives regarding
normative systems: one with norms that, by design, cannot be vio-
lated, which is the perspective taken by electronic institutions [1];
and another with norms that can be violated, potentially entailing
penalties for the violator [5]. The latter perspective has been gain-
ing increasing acceptance within computer science [10, 4], since

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

Norm | Meaning
obligation(p) | add a goal to achieve state p, from
Activation to Expiration.
obligation(a) | add a new plan with a Activation trig-
gering event, and action a in its body.
prohibition(p) | prevent adoption of plans that bring
about state p.
prohibition(a) | prevent adoption of plans that execute
action a.

Table 1: Summary of norms and their meaning.

it considers that autonomous agents must always have choice over
their behaviour. This paper focuses on autonomous agents and how
to achieve flexible behaviour, thus we take precisely this approach.
From an individual agent’s perspective, the main effect of norms
on its reasoning is to determine which behaviours must be carried
out, and which behaviours must not be carried out or else some
form of punishment ensues. Of course, other types of norms pre-
scribing preferences or more complex stipulations are possible, but
from a practical perspective, and using a closed world assumption
where everything not prohibited is permitted, the possibility of non-
binding recommendations can be ignored, leaving an agent’s own
reasoning process to determine the best courses of action. This
means that we ignore permissions, since they just recommend be-
haviours rather than require behaviours to be changed. Although
we could include permissions as norm-modification operators in
the sense that a permission may invalidate an obligation or prohi-
bition, the resulting system would have effectively the same func-
tionality in terms of behaviour modification yet would complicate
the discussion in this paper.

2.2 Norms and Goal Types

Norms may refer to either: declarative world states, in which an
agent must try to achieve or refrain from achieving certain world
states; or actions, in which an agent must try to execute or refrain
from executing a particular action [6], as is summarised in Table 1.

Norms must have a well defined validity period; that is, a spec-
ification of when a certain norm is in force and when it ceases to
be in force. This validity period is crucial for the enforcement of
norms, particularly in the case of obligations, as without a deadline,
an obliged party is not compelled to fulfill its obligation at any par-
ticular time. For example, if a consumer is obliged to pay his or her
electricity bill, it is not possible to detect a violation without know-
ing when this payment is due. Conversely, for prohibitions, certain
industrial research positions require a researcher to sign a form of
non-disclosure agreement that includes provisions forbidding the
researcher to engage in any competing research for a set period of
time, usually one year after the termination of the initial contract.
Therefore, norm encodings normally include a representation of the
activation and expiration of each norm, indicating when the deon-
tic modality referred to in the norm (e.g. obligation and prohibition)
should be complied with.

Now, since most agent languages, such as AgentSpeak(L), 3APL,
and others [2] use first-order logic to represent beliefs, it is appro-
priate to adopt a similar type of norm representation. Such a logic-
based representation of norms allows for a more straightforward
use of an agent language in detecting when norms are being com-
plied with. Moreover, we leverage representational concepts from
the formalisation of Oren et al.[11], which includes notions of ac-
tivation and expiration of a norm, delimiting their validity through
time, an important aspect of norms in a dynamic environment. We

178

therefore adopt a representation for norms in our system as follows:
norm(Activation, Expiration, Norm)

where Activation is the activation condition for the norm to be-
come active, Fxpiration is the expiration condition to deactivate
the norm, and Norm is the norm itself. For example, if an agent
is obliged to drive on the left when it is in Britain, but not when it
leaves, the norm denoting this obligation is represented as norm (in
(britain), notIn(britain), obligation(driveOn (left))).
In this context, we focus on using norms to determine whether
plans and actions may be executed, and on the introduction of new
triggering events linked to plans to satisfy new obligations.

It is important to note that we are not concerned, at this point,
with handling more complex norm representation schemes in the
way that a complete deontic logic does. Rather, we reduce norm
representation to these two outcomes of prohibition and obligation
to facilitate the creation of concrete agent behaviours aimed at com-
plying with a set of norms. Ultimately, however, norms created
with a more complex representation language must be reduced to
these two outcomes in order to enable meaningful modifications to
an agent’s behaviour to be inferred.

There are many possible interpretations for such activation and
expiration conditions, so it is important to specify what each condi-
tion means for an agent. We consider the activation condition to be
a logical formula that, once entailed by an agent’s beliefs, results
in the norm being applicable to the agent. Conversely, we consider
the expiration condition to be a logical formula that, once entailed
by an agent’s beliefs, results in the norm ceasing to be applicable
to the agent. In what follows, we assume these conditions under
a monotonic logic framework, so that when a condition becomes
true, it will remain true in the future. We make this assumption
now in order to simplify the description of our behaviour modifica-
tion technique, so that norms can be activated and expire only once
through their activation and expiration conditions. In this way, once
a norm has been accepted and acted upon, there is no need for an
agent to keep track of which norms have been accepted in the past,
since monotonicity ensures their activation does not occur multiple
times. We can later drop this assumption, but it is useful to keep
it for ease of explanation, eliminating the need for more elaborate
bookkeeping in our algorithms.

2.3 Norm Perception

In relation to accepting a norm, we consider its life cycle relative
to an agent to start with the norm being issued in an environment
(or society), and perceived by an agent. When an agent perceives
new norms it decides whether or not to accept them (and modify its
behaviour) [1], or reject them (and suffer potential sanctions, but
this is a macro level issue). Although the issue of perceiving and
deciding on accepting a norm has seldom been considered in the lit-
erature, it is of considerable importance in open dynamic systems
regulated by norms. For example, in real human societies, norms
are not inherent to the world, but rather created by some relevant
authority and then made known to the parties to which a norm ap-
plies under the expectation that these norms will be accepted and
complied with, which is not always the case. Furthermore, when an
agent enters a new environment, it is possible that it will encounter
a set of norms different from those for which it was designed. Here,
an agent must be made aware of these norms and change its be-
haviour accordingly. Although the decision to accept or reject a
norm is important, and must consider the future implications of ig-
noring a norm and later violating it, we do not detail it due to space
limitations. Nevertheless, this may require subsequent obligations
to remedy violations [10] or incur penalties, for example.

Felipe Menequzzi, Michael Luck - Norm-Based Behaviour Modification in Bdi Agents

Accept Verify
Norm Consistency
__________ |
Environment / Norms Change
Society Behaviour
Reject —» Sanctions
Norm

—

Figure 1: Overview of norms processing in our system.

We use the distinction of perception and belief to denote whether
or not a norm has been accepted. If an agent has added a perceived
norm to its belief-base, we consider the agent to have implicitly
accepted the norm, and behaviour modification must ensue. In
order to facilitate the integration of deontic states into an agent
system, we adopt the view of Porn [12] that deontic statements
themselves can be seen as states of affairs. Thus, from an agent’s
perception point of view, the fact that a book is over a table (e.g.
over(book, table)) is no different than a norm obliging an agent to
drive on the right (e.g. norm(X,Y, obligation(drive(right)))).
Given this representation, the difference between perception and
belief indicates a norm’s status in terms of acceptance by an agent.

After accepting a norm, an agent needs to make sure that the
norm is not in conflict with the set of norms already in effect for
that agent and then modify its behaviour. For example, if an agent
accepts a norm n that prohibits it from performing an action act,
and later perceives a norm ng that obliges it to perform action act,
then nq and ng are in conflict. Thus, it is necessary for an agent to
make sure it does not accept conflicting norms which would result
in inconsistent behaviours, such as creating and executing plans
that carry out prohibited actions.

These processes are illustrated in Figure 1, in which rectangles
represent agent reasoning processes, rounded rectangles represent
environmental or societal processes, and diamonds represent deci-
sions within an agent. The flow starts with the receipt of norms
from the environment and the decision to accept or reject a norm.
The processes that follow from this decision (including potential
sanctions) consist of verifying consistency and subsequently chang-
ing behaviour. In this paper, we focus only on the behaviour mod-
ification part at the end of the flow in the figure. In particular, we
avoid the issue of maintaining norm consistency, a very complex
problem in itself, having been addressed by other efforts [14] that
can be easily integrated into ours, as we discuss in our conclusions.

The point here is that while norms have been considered more
generally, especially in the context of normative bodies within so-
cieties, the impact of norms on agent architectures, in particular
BDI architectures, has received little attention. Specifically, the
impact of norms at the level of an agent’s control cycle has been
largely overlooked. Therefore, building on previous efforts, in par-
ticular the planning capabilities described by Meneguzzi and Luck
[9], and the communication framework defined by Vieira et al.[16],
we address norms from the point at which an agent receives them.

In the following sections we proceed to detail the expected ac-
tions an agent must undertake in order to comply with norms under
various combinations of activation and expiration conditions.

3. NORM PROCESSING

As we have seen, our norm representation includes conditions
for norm activation and expiration, denoting when these norms are
to affect an agent’s behaviour. The main consequence of these con-

179

ditions when modifying an agent’s behaviour lies in what must be
done in reaction to the agent accepting new norms. The two most
evident situations regarding activation and expiration conditions
are: when the activation condition is already true, which means
that the norm must be enacted immediately and any contrary be-
haviours stopped; and when an expiration condition is already true,
which means that the norm has expired and can be ignored. Clearly,
there are a number of possible combinations of activation and expi-
ration conditions, and each combination results in a different set of
actions an agent must carry out in order to comply with the norm.
We therefore analyse these combinations in Section 3.1 providing
an overview of the outcome of each combination for an agent want-
ing to comply with the norm. Subsequently, we further detail al-
gorithms that generate these outcomes, starting with algorithms to
react to the activation of a norm in Section 3.2, followed by the
results of norm expiration in Section 3.3.

3.1 Norm Outcomes

We summarise all norm condition combinations and their out-
comes in Table 2, for each type of deontic modality considered in
this paper (i.e. obligation and prohibition), and for each type of tar-
get for the modality (either an action or a world state). The activa-
tion and expiration condition columns give the truth-value of these
conditions at the time the agent accepts the norm, so that (following
our monotonic assumption) True means the expression is true and
will remain so, while False means the expression is not yet true.

The first case we consider for all deontic modalities is when both
the activation and the expiration condition are true, which results
in the norm being ignored, as its expiration condition has already
elapsed. Norms are also ignored when the activation condition is
false but the expiration condition is true since, again, the norm has
already expired. Now, if the activation condition is already true
when an agent accepts an obligation, it must react to either achieve
the world state specified in an obligation(p), or execute the action
specified in an obligation(a).

If this same combination of conditions occurs for a prohibition,
it means that an agent must refrain from achieving the offending
world state or executing the offending action. Since an agent might
have already adopted an offending plan, it must not only suppress
plans that might violate the prohibition, but also drop any instances
of these plans adopted as intentions.

Finally, when both the activation and expiration conditions are
false, an agent must create new plans to enforce compliance as
soon as the activation condition holds and add them to the plan li-
brary. This plan creation step is necessary because in this situation
the norm has not yet been activated, but the agent must be pre-
pared for its activation in the future. In particular, if the norm refers
to an obligation to achieve a world state, the agent must create a
plan that achieves the specified world state whenever the activation
condition holds, whereas if it refers to an obligation to execute an
action, the new plan must execute that action. (Note that plans to
comply with obligations to achieve world states are created using
some kind of planning capability, of which there are many, and we
will not consider this further here.) Furthermore, if the norm refers
to a prohibition to achieve a world state, the new plan must sup-
press all plans that achieve the prohibited world state whenever the
activation condition holds, whereas if it refers to a prohibition to
execute an action, the new plan must suppress all plans containing
the prohibited action. In both these cases, not only must plans be
suppressed, but violating intentions must also be dropped.

Now, we understand that creating new plans to comply with
newly accepted norms, and later removing these plans after a norm
has expired, from a pragmatic point of view, is not necessarily the

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

Deontic | Activation | Expiration | Outcome
Modality | Condition | Condition
obligation(O) True True Ignore norm
True False Adopt plan to achieve O (if O is a world state) or adopt plan to execute O (if O is an action)
False False Add plan to achieve O (if O is a world state) or add plan
that includes O (if O is an action) to PL when activation holds
False True Ignore norm
prohibition(P) True True Ignore norm
True False Drop intentions to achieve P and suppress plans that achieve P (if P is a world state) or drop
intentions that include P and suppress plans that include P (if P is an action)
False False Add plan to suppress plans that achieve P (if P is a world state) or
plans that include P (if P is an action) when activation holds
False True Ignore norm

Table 2: Combinations of activation and expiration conditions and their outcomes.

optimal solution. For example, it is certainly possible for an agent
to use existing plans in its plan library to accomplish an obligation,
avoiding the need to generate a new plan from scratch. However,
an agent must still ensure that the plan’s invocation condition is
compatible with the activation condition of the obligation, as well
as ensuring that it does not also bring about undesirable effects.
This analysis process is complex in itself, and it is unclear how
the cost of this process compares to planning from first principles.
Furthermore, removing plans makes perfect sense under our mono-
tonic assumption, since a norm will never occur in the exact same
form again in the future. However, if we drop the monotonic as-
sumption, plans should no longer be simply deleted after the norm
has expired, but must instead be suppressed and stored for reuse for
norms with multiply recurring activation and expiration conditions.

3.2 Norm Activation

Now that we have considered the possible high-level outcomes
for an agent seeking to comply with norms, we consider how to deal
with the receipt of obligations and prohibitions in more detail. In
what follows, we assume only a BDI-type language with constructs
for goals to be or goals to do or both; and a plan library or similar
construct to store plans, which can be modified to reflect the set of
possible plans an agent may adopt. This plan library is the target
of our norm processing mechanism, which generates changes in the
set of possible plans an agent may adopt either by adding new plans
to comply with obligations or by preventing existing plans from
being executed to comply with prohibitions. To accomplish these
changes, we need to modify an agent’s reasoning ability to be able
not only to deal with the world through its actions, but also to deal
with its own data structures, its available plans in particular. As a
consequence, we need meta-level operators that can suppress plans
from being selected from a plan library or from being generated by
a planner, and can introduce new plans to the plan library.

In the following sections we refer to some algorithms as tem-
plates, or abstract algorithms that need to be further specified at
runtime in order to be instantiated as concrete algorithms. This is
because most agent languages define agent behaviours in terms of
reactions to certain conditions in the environment, and the norm
processing behaviours we specify are defined in terms of their ac-
tivation and expiration conditions. More specifically, we consider
the addition of plans to handle activation conditions for each type
of deontic modality in the algorithms shown in Sections 3.2.1 and
3.2.2, and the plans to handle expiration conditions in Section 3.3.

Now, in order to illustrate the operation of these algorithms, we
use an AgentSpeak(L) implementation as an example, instantiating
the algorithms appropriately. For this to be meaningful, we must
introduce the notation used for AgentSpeak(L) plans. An Agent-
Speak(L) plan e : b1& ... &b, «— hi;...; hy. is composed of a
triggering event e, a context condition expressed by the b1, ..., by,

180

belief literals, and a list A1, . .., h, of goals or actions [13]. Trig-
gers may consist of the addition (denoted by a leading plus sign)
or deletion (denoted by a leading minus sign) of beliefs, achieve-
ment goals (denoted by an exclamation mark), or queries (denoted
by a question mark), so that the addition of an achievement goal
g is denoted as +!g. In addition, we need to differentiate actions
(which can also include internal actions representing some func-
tionality internal to an agent) from beliefs, which we do with a
preceding dot symbol; then, the action to vacuum a room is repre-
sented as .vacuum(room) (and the action to remove a plan from
the plan library is written .remove_plan(Plan)), whereas the be-
lief that a room is clean is represented as clean(room). (Note that
the specifics of how particular internal actions work are not impor-
tant at this point, and we discuss them in detail later in Section 4
along with other implementation concerns.) Finally, we adopt the
plan labelling convention used in the Jason interpreter [2], whereby
plans are given unique labels in the form of predicates preceded by
the at (@) sign. For example, a plan @id e : c <- a. is uniquely
identified by the label id, which can be used later for plan manipu-

lation operations referring to the plane : ¢ <- a..

3.2.1 Obligations

When an agent chooses to comply with a newly perceived obli-
gation, the steps it must take are as stated in more detail in Al-
gorithm 1. While this is an algorithm, it is also a plan, since the
algorithm must be encoded as a plan for an agent to be able to use
it. The plan is very simple and follows the basic requirements of the
outcomes of accepting an obligation as shown in Table 2. That is,
if an obligation has already expired, it can be ignored; otherwise,
new plans must be added to handle the activation and expiration
conditions of the norm. If the obligation has been activated, it must
be acted upon. Thus, Line 1 checks whether the agent believes the
norm has expired, and if so, ignores it. Next in Line 4, the agent
adds a new plan, from Algorithm 2, to deal with the activation con-
dition. If the norm activation condition is true, the plan must be
performed immediately, either achieving a specified world state or
executing an action. Finally, the agent adds a new plan to handle
the expiration of the obligation, which we explain in Section 3.3.

This newly added plan is detailed in Algorithm 2, and consists
of either adding a new goal to achieve an obligatory world state,
or executing an obligatory action upon the perception of the norm
activation event. Note that Algorithm 2 is a plan template; that is, it
shows the general form of plans that are instantiated with informa-
tion about a specific norm and its associated activation condition.
Since we are not concerned in this paper with the process by which
an agent decides whether to comply with a norm, in both plans we
assume that acceptance has been determined, indicated in the pre-
requisites of each algorithm. However, this decision to accept or
reject a norm could be taken later in the reasoning process, depend-

Felipe Menequzzi, Michael Luck - Norm-Based Behaviour Modification in Bdi Agents

Algorithm 1 Plan to comply with an obligation.

Require: Receipt of norm(Activ, Exp, obligation(O))
Require: Acceptance of norm(Activ, Exp, obligation(O))
Require: Belief Base BE'; Plan Library PL

1: if BF = Ezp then

2 return

3: end if

4: Create plan L activ,obligation(0) Using Algorithm 2 template
5: Add LActiv,obligation(O) to PL

6: if BF |= Activ then

7: Execute plan from Algorithm 2

8: end if

9: Add plan from Algorithm 5 to deal with expiration

ing on the circumstances. In Algorithm 1, the requirements also
refer to an agent’s belief base, used to specify that the activation
condition must hold before seeking to comply.

0NN W=

@obligationStart (clean(floor))
+time (800) : true
<= l!clean(floor) .

@obligationEnd (clean (floor)

+day (xmas) : true

<—- .remove_plan (obligationStart (clean(floor)));
.remove_plan (obligationEnd(clean (floor))) .

Listing 1: Plans for the clean state norm.

specified action is executed.

3.2.2 Prohibitions

Now, when the accepted norm refers to a prohibition, we need
to use Algorithm 3. This consists of first checking for norm expi-
ration, then adding a plan to handle norm activation, and checking
whether or not the norm has already been activated, in which case
the added plan must be executed.

Algorithm 3 Plan to comply with a prohibition.

Algorithm 2 Plan template to react to activation of an obligation.

Require: Acceptance of norm(Activ, Exp, obligation(O))
Require: Receipt of Activ event
Require: Plan is uniquely labelled with label L 4cti0,0btigation(0)
if O is a world state p then

Add goal to achieve p
else if O is an action a then

Add goal to execute a
end if

b

5:

Example To illustrate these algorithms (plans), we use the exam-
ple of a cleaner agent that is capable of using a vacuum cleaner to
clean some room. Suppose that the cleaner agent accepts a norm to
achieve a world state in which the floor is clean at 8:00 hours every-
day, until Christmas Day, expressed as +norm (time (800), day (
xmas) , obligation(clean(floor)))[source(env)].In our so-
lution, this results in the generation of two plans, one associated
with the activation condition, which leads to the adoption of a plan
to achieve the obliged world state, and one associated with the ex-
piration condition, which leads to the removal of all the plans as-
sociated with the specified norm. The two plans, using our no-
tation introduced earlier, are illustrated in Listing 1. (While we
give them here as illustration, we delay further explanation of the
implementation of this example until Section 4.) The first plan, la-
belled obligationstart (clean(floor)), has the activation con-
dition time (800) as its trigger, which leads to the adoption of an
achievement goal !clean (floor), (and in turn a plan) assumed to
achieve a state in which clean (floor) holds. This goal addition,
shown in Line 3 of Listing 1, corresponds to Line 2 of the generic
Algorithm 2. The second plan, labelled obligationEnd (clean (
floor)) has the expiration condition day (xmas) as its trigger, and
results in both plans being removed from an agent’s plan library
through two invocations of the . remove_plan internal action. Note
that the steps to remove the plans associated with the obligation’s
expiration may seem self-referential but, due to the AgentSpeak
reasoning cycle, on execution they are loaded into an instantiated
intention that removes the original plans from the plan library.
Conversely, when an agent is obliged to execute an action, a
similar plan schema is generated, but instead of adopting a goal
to achieve a specified state, the new plan needs simply to execute
the specified action. Thus, if a cleaner accepts a norm to vac-
uum the floor at 8:00 hours every day, until Christmas day, ex-
[Hessedas+norm(time(800), day (xmas), obligation (.vacuum
(floor))) [source (env)], very similar plans are adopted, but in-
stead of adding an achievement goal to its intention structure, the

181

Require: Receipt of norm(Activ, Exp, prohibition(P))
Require: Acceptance of norm(Activ, Exp, prohibition(P))
Require: Belief base BF'

1: if BF = Ezp then

2 return

3: end if

4: Create plan L activ, prohibition(p) Using Algorithm 4 template
5: Add LActi'u,pTohibition(P) to PL

6: if BF |= Activ then

7: Execute plan from Algorithm 4

8: end if

9: Add plan from Algorithm 6 to deal with expiration

The plan to deal with prohibition activation, detailed in Algo-
rithm 4, consists of first scanning an agent’s intentions (i.e. the
plans already adopted) for instances of the prohibited action, or
for plans having a prohibited world state as a consequence. If
plans violating the prohibition are found as intentions, they must
be dropped immediately. Afterwards, the plan library is similarly
scanned for plans that may violate the prohibition if executed. If
the prohibition refers to a state, all plans with this state as a con-
sequence must be suppressed, while if the prohibition refers to
an action, all plans with this action must be suppressed. In addi-
tion, suppressing the plans, suppressed plans are stored in the set
SPlans,prohivition(P)» SO that when the prohibition expires later,
these plans can be restored. Like Algorithm 2, the plan of Algo-
rithm 4 is a plan femplate (that is, a general form of plan that be-
comes concrete after the information about a specific norm and its
activation and expiration conditions is known).

It is important to note here that we leave the meaning of plan
suppression relatively ambiguous, since the details of how this is
done depend on the particular way in which an agent architecture
operates. Later in this paper we show how this can be achieved in
an AgentSpeak(L)-type agent.

Example If our cleaning agent was prohibited from entering a room
with classified documentation, expressed as +norm (time (800),

day (xmas), prohibition (in(classifRoom))) [source (env)],
two new plans need to be generated. First, for activation, we need to
make sure that the plans that result in the cleaner being in the clas-
sified room are suppressed from execution, as shown in Listing 2.
In this plan, Lines 3 to 5 of Listing 2 correspond to Lines 13 to 15
of the generic Algorithm 4. Moreover, when the prohibition expi-
ration condition becomes true, not only do the plans to handle the
activation and expiration conditions need to be removed, but also
the plans that were suppressed by the activation condition need to

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

——

— OO0 0NN B W —

Algorithm 4 Plan template to react to state prohibition activation.

Require: Acceptance of norm(Activ, Exp, prohibition(P))

Require: Receipt of Activ event

Require: Intention structure /; Plan library PL

Require: Plan uniquely labelled with label L activ,prohivition(P)

Ensure: Suppressed plans are stored in set Spians, prohibition(P)
1: for all Intention ¢ € I do

2: if (P is a world state p) and (p is a consequence of ¢) then
3: Drop intention %

4: elseif P is an action a then

5: for all Steps s in remaining steps of i do

6: if s = a then

7: Drop intention %

8: end if

9: end for
10: endif
11: end for

12: for all Plans pl € PL do
13: if (P is a world state p) and (p is a consequence of) then
14: Suppress pl

15: SPlans,prohibition(P) = SpPlans Upl

16: elseif P is an action a then

17: for all Steps s in pl do

18: if s = a then

19: Suppress pl

20: SPlans,prohibition(P) = SPlans Upl
21: end if

22: end for

23: endif

24: end for

be unsuppressed.

entails that once a norm has been activated and then expired, it will
never become active again. Thus, Algorithms 1 and 3, containing
plans for reacting to norms, also include a final step to add a plan
dealing with norm expiration to the plan library. Such norm ex-
piration plans aim to undo the behavioural changes effected when
the norms were activated, thus restoring the plan library to a state
in which an agent’s behaviour is not affected by them. Thus, the
plan in Algorithm 5 consists both of removing the plan responsible
for dealing with obligation activation and afterwards of removing
itself from an agent’s plan library. Both these plans must be individ-
ually identifiable within an agent’s plan library, so we label them
reSPECtiVely LActiv,obligation(O) and LEzp,obligation(O} in order
to remove them when they are no longer needed.

Algorithm 5 Plan to react to the expiration of an obligation.

Require: Acceptance of norm(Activ, Exp, obligation(O))
Require: Receipt of Fxp event
Require: Label L 4ctiv,0b1igation(o) fOr a norm activation plan
Require: Plan library PL
Ensure: Plan is uniquely labelled with label L gy obiigation(0)
1: Remove plan L pctiv,obligation(o) from PL
2: Remove plan L gep obligation(o) from PL

The acceptance of prohibitions, on the other hand, not only adds
new plans to react to norm activation and expiration, it also affects
which plans are available to an agent after a prohibition has been
activated. Thus, the plan to react to the expiration of a prohibi-
tion must not only remove the new plans added to comply with the
norm, it must also restore the plans previously suppressed to their
initial state of availability. The plan of Algorithm 6 accomplishes
this by unsuppressing the initially suppressed plans which, in the
plan of Algorithm 4, were stored in the set Spians,prohibition(P).
and then removing plans L activ,pronibition(p) and
Lgep,pronivition(p)y from the plan library.

@prohibitionStart (in(classifRoom))

+!Start : true

<— !findPlansWithEffect (1
!'suppressPlans (SPlans) ;
+suppressedPlans (in(classifRoom), SPlans) .

n(classifRoom), SPlans);

@prohibitionEnd (in(classifRoom))

+!End : suppressedPlans (in(classifRoom), SPlans)

<- lunsuppressPlans (SPlans) ;
.remove_plan (prohibitionStart (in(classifRoom)));
.remove_plan (prohibitionEnd (in(classifRoom))) .

Listing 2: Plans generated from a state prohibition.

Plans to effect restrictions on executing actions are very simi-
lar to those relating to achieving world states, the only difference
being in the process for selecting the plans that need to be sup-
pressed. In this case, the plans searched for are those that contain
a particular action. For example, if the cleaning agent might be
obliged not to vacuum a table during its rounds of cleaning through
the norm +norm (time (800), day (xmas), prohibition (vacuum(
We do not include the example plans
due to space constraints, but they should be obvious.

table))) [source (env)].

3.3 Norm expiration

Now that we have seen the plans needed to start complying with
norms under several circumstances, we need to examine how an
agent behaviour is modified as a result of a norm expiring. When
an agent accepts a norm and changes its behaviour as a result of
the norm becoming active, it either includes extra plans to comply
with obligations or suppresses some of its plans in order to vio-
late a prohibition. However, these behaviour modifications should
not become permanent within an agent if the norms that caused
them cease to be active. Moreover, our monotonicity assumption

182

Algorithm 6 Plan to react to the expiration of a prohibition

Require: Acceptance of norm(Activ, Exp, prohibition(P))
Require: Receipt of Exp event
Require: Label L 4ctiv,pronibition(p) for a norm activation plan
Require: Plan library PL
Require: Spians pronivition(p) Of suppressed plans
Ensure: Plan is uniquely labelled with label L gep pronibition(p)
1: Unsuppress all plans from Spjans,prohibition(P)
2: Remove plan L gctiv,prohibition(p) from PL
3: Remove plan Lgap pronivition(p) from PL

4. NORMATIVE AGENTSPEAK(L)

In order to test the viability of our solution in a practical agent
language, we have developed an implementation of the strategies
outlined in Section 3 using an AgentSpeak(L) interpreter. An im-
portant part of this involves the manipulation of an agent’s own
plan library, necessitating a means to perform meta-reasoning, al-
lowing AgentSpeak(L) plans to manipulate other plans. With such
a meta-reasoning facility in place, we can create AgentSpeak(L)
plans that accomplish the norm-induced behaviour modification de-
scribed above. We also point out that, while the plans shown in Sec-
tion 3 use constructs that were not described in detail, this section
clarifies all the plan constructs used throughout the paper.

4.1 Meta-reasoning for AgentSpeak(L)

The AgentSpeak(L) language does not have explicit constructs
for the analysis of a plan library, yet this is required in the strate-
gies described in Section 3 and implemented in Section 4.2. In par-
ticular, for an agent to evaluate its existing behaviours, encoded in

Felipe Menequzzi, Michael Luck - Norm-Based Behaviour Modification in Bdi Agents

Effect

takes a plan P and unifies its plan
steps as a list of literals with .S
takes a plan P and unifies its
declarative consequences with C'

Action
.plan_steps (P, S)

.plan_conseq(P,C)

.action (A) succeeds if A refers to an action
.literal (L) | succeeds if L to a literal
.remove_plan (P) | removes P from the plan library
.suppress_plan (P) | suppresses the specified plan from

being executed
allows a previously suppressed
plan to be executed

.unsuppress_plan (P)

Table 3: Summary of the meta-reasoning actions

its plans, we require the introduction of meta-reasoning operators
that allow regular AgentSpeak(L) plans themselves to explore and
process other plans in the plan library. In our system, we construct
such operators, as summarised in Table 3, through the use of inter-
nal agent actions. The common understanding of agent actions is
that they are environment transformation operators, so that when an
agent invokes an action, some consequence in the environment is
expected. However, when some custom computation needs to take
place within a single reasoning cycle, Bordini et al.use the concept
of an internal action [2]. This allows an agent to access extensible
libraries of custom procedures that can be executed instantaneously
by an agent. Unlike traditional actions, internal actions do not cause
changes in the environment, and since they are executed instanta-
neously, they can be included in either the body or the context of
a plan, to refine the process of selecting applicable plans. Internal
actions are denoted by a preceding dot, so the internal action to
suppress a plan is represented as . suppress_plan(Plan).

Most of the meta-level actions of Table 3 either have simple out-
comes or implement parts of the algorithms described in Section 3.
However, the first two actions in the table are needed specifically to
deal with the way in which AgentSpeak(L) operates, and we need
to clarify them further. Plans to ensure compliance with prohibi-
tions are more complex in that they require an agent to scan its
entire plan library looking for violating plans. For prohibitions re-
lating to executing an action, this requires finding all plans in the
plan library that contain the prohibited action and suppressing their
execution. This is shown in Algorithm 7.

Algorithm 7 Find plans with action.

Require: AgentSpeak plan library PL

Require: Action act

Ensure: A list PL 4 of plans containing act
1: for all Plans {¢ : ¢ — b.} € PL do

2: for all Steps s; € bdo

3 if s; unifies with act then

4 Add{t:c—b.}to PLa
5 end if

6: end for

7: end for

8: return PL4

Prohibitions relating to achieving certain world states require an
agent to analyse the effects of each of the plans in its plan library,
and suppress the execution of those that have the prohibited state as
an effect. An algorithm to accomplish this is shown in Algorithm 8.

4.2 AgentSpeak plan modification mechanisms

Using these internal actions, we can create AgentSpeak(L) plans
that add newly accepted norms, as described in Section 2.3, to the
set of active norms. As we have seen, adding obligations is rela-
tively straightforward, and we omit the meta-level plans for their

183

—_—

— OO 00NN B W=

Algorithm 8 Find plans with effect.
Require: AgentSpeak plan library PL
Require: Proposition p
Ensure: A list PLp of plans containing p
: for all Plans {¢ : ¢ — b.} € PL do
Get the effects £ of {t : ¢ < b.}
for all Effects e € E do
if e unifies with p then
Add{t:c—b.}to PLp
end if
end for
end for
return PLp

VRN RN

@prohibitionStart (Prohibition)

+!Start : true

<— !findPlansWithAction (Prohibition,
!'suppressPlans (SPlans) ;
+suppressedPlans (Prohibition, SPlans) .

SPlans);

@prohibitionEnd (Prohibition)

+!End : suppressedPlans (Prohibition, SPlans)

<- l!unsuppressPlans (SPlans) ;
.remove_plan (prohibitionStart (Prohibition));
.remove_plan (prohibitionEnd (Prohibition)) .

Listing 3: Template plans generated from an action prohibition.

addition, focussing instead on those responsible for handling the
addition of prohibitions. When a prohibition referring to an action
is added, we need to create two plans, one to handle the start of the
prohibition and another to handle the end of the prohibition.

Thus, when a prohibition on an action becomes effective, an
agent needs first to find all plans with the prohibited action and then
suppress each of the plans containing the offending action. Finding
these plans involves a !findPlansWithAction(Prohibition,
Selplans) plan, which uses the .plan_steps(Plan,Steps) ac-
tion to explore each plan step, corresponding to step 2 of Algo-
rithm 7. Once the plans are identified, the plan needs to suppress
these plans with the ! suppressPlans (SelPlans) plan, which uses
the .suppress_plan(Plan) action. In our implementation, plans
that are suppressed are removed from the plan library, and thus not
considered as options to achieve a certain goal. It is also important
to keep track of the suppressed plans so that they can be unsup-
pressed later. When the prohibition ceases to be effective, we need
to unsuppress the plans previously suppressed, as well as removing
the plans related to this particular norm, since they will no longer
be necessary. A meta-plan responsible for creating these norm-
related plans uses the start and end conditions to create triggers for
two plans that accomplish the suppression and unsuppression of the
necessary plans, generating plans using the template in Listing 3.

To add the plans that handle prohibitions on world states, the
necessary steps are similar to those for prohibitions on actions, the
only difference being that the search criterion for offending plans
involves the effects of these plans. We extract the effects of plans
using the .plan_conseq(Plan, Consequences) action, used inthe
!findPlansWithEffect (Prohibition, SelPlans) plan. Like in
the prohibition for actions, a meta-plan responsible for creating
these norm-related plans creates two plans following the template
shown in Listing 4.

5. CONCLUSIONS

In this paper, we have described a framework of concrete be-
haviours for classical agent languages that enable them to effect
changes in their own plan libraries to conform to new norms ac-

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

—_——

— OV W~

@prohibitionStart (Prohibition)

+!Start : true

<— !findPlansWithEffect (Prohibition,
!'suppressPlans (SPlans) ;
+suppressedPlans (Prohibition, SPlans) .

SPlans) ;

@prohibitionEnd (Obligation)

+!End : suppressedPlans (Prohibition, SPlans)

<- l!unsuppressPlans (SPlans);
.remove_plan (prohibitionStart (Prohibition));
.remove_plan (prohibitionEnd (Prohibition)) .

Listing 4: Template plans generated from a state prohibition.

cepted from the environment. Our framework is sufficiently generic
that it can be extended into any traditional BDI style agent lan-
guage. Importantly, we have also developed these general algo-
rithms further into a concrete instantiation in AgentSpeak(L) (using
a new toolkit of meta-reasoning operators, that has not been consid-
ered previously), providing a novel contribution in itself, as well as
an illustration and realisation of the algorithms. We show how our
framework can generate new plans to enable agents to comply with
norms, and remove the plans when the norms are no longer rele-
vant, through a series of examples throughout the paper, demon-
strating the practicality of our approach.

In this work, we have adopted a stance that takes theoretical
notions and integrates them into practical agent languages. Pre-
vious work has also addressed similar concerns, in moving from
largely intractable deontic modalities into simpler, yet useful rep-
resentations of norms to be used in a concrete system. For exam-
ple, one of the first practical architectures for a norm-driven agent
was Kollingbaum and Norman’s NoA [6], which takes a BDI-like
agent architecture and changes the focus of agent behaviour from
achieving desires to fulfilling norms. As in NoA, we use an explicit
representation of the effects of an agent’s plans to detect potential
norm violations, as well as deciding which plans are more suitable
for achieving an obligation, but our agents are still driven by their
desires like traditional BDI agents. In contrast, Vazquez-Salceda et
al.[15] take the ISLANDER [3] formalism and use it to establish
guidelines for the implementation of a normative system, its mon-
itoring and the enforcement of its norms. Our work can be seen
as complementary, since we provide the machinery to modify the
behaviour of an agent willing to accept norms, as opposed to being
concerned with the rest of the system. Unlike other approaches,
such as electronic institutions [1], which typically require compli-
ance, our agents may choose to ignore a norm, even if it may lead
to potential penalties.

Due to the rather large scope of normative agents, we have not
provided a detailed account of the important issue of maintaining
the consistency of a set of norms. Other types of potential clashes
involve overlapping of norm conditions, including their activation
and expiration; for example, if an agent accepts a norm prohibiting
work from time 12 to time 14, and another prohibiting work from
time 11 to time 15, plans may be modified due to the activation of
the second prohibition at time 11, and then modified again due to
the expiration of the first prohibition at time 14, jeopardising the
second prohibition in the process. However, it is important to point
out that a solution for addressing this could be easily adapted from
the work of Vasconcelos et al.[14], which provides an algorithm
for resolving conflict and inconsistency in sets of norms using a
unification-based technique. Similarly, our agents could resolve
norm conflicts by adapting the mechanism used by Kollingbaum’s
[6] NoA architecture for the same purpose. Thus, by assuming an
existing norm consistency maintenance process, we have reduced
the problem we address to focus on individual norm additions and
deletions, avoiding dilution of our efforts, and facilitating a more

184

specific consideration of the relevant issues.

Acknowledgments: The first author is supported by Coorde-
nacgdo de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
of the Brazilian Ministry of Education.

6. REFERENCES

[1] H. Aldewereld, F. Dignum, A. Garcia-Camino, P. Noriega,

J. A. Rodriguez-Aguilar, and C. Sierra. Operationalisation of
norms for usage in electronic institutions. In Proc. 5th Int.
Joint Conf. on Autonomous Agents and Multiagent Systems,
pages 223-225, 2006.

[2] R. H. Bordini, M. Dastani, J. Dix, and A. E.
Fallah-Seghrouchni. Multi-Agent Programming: Languages,
Platforms and Applications. Springer, 2005.

[3] M. Esteva, J. A. Padget, and C. Sierra. Formalizing a
language for institutions and norms. In J.-J. C. Meyer and
M. Tambe, editors, Intelligent Agents VIII, volume 2333 of
LNCS, pages 348-366. Springer, 2001.

[4] N. Faci, S. Modgil, N. Oren, F. Meneguzzi, S. Miles, and
M. Luck. Towards a monitoring framework for agent-based
contract systems. In M. Klusch, M. Pechoucek, and
A. Polleres, editors, Cooperative Information Agents XII,
volume 5180 of LNCS, pages 292-305, 2008.

[5] A.J.1. Jones and I. Porn. ‘ought’ and ‘must’. Synthese,
66(1):89-93, 1986.

[6] M. J. Kollingbaum and T. J. Norman. Norm adoption and
consistency in the NoA agent architecture. In PROMAS
2003, volume 3067 of LNCS, pages 169-186. Springer, 2003.

[7] A.Lomuscio and M. Sergot. Deontic interpreted systems.
Studia Logica, 75(1):63-92, 2003.

[8] F. Lopez y Lopez, M. Luck, and M. d’Inverno. A normative
framework for agent-based systems. In Proc. Ist Int. Symp.
on Normative Multi-Agent Systems, 2005.

[9] F. Meneguzzi and M. Luck. Leveraging new plans in
AgentSpeak(PL). In M. Baldoni, T. C. Son, M. B. van
Riemsdijk, and M. Winikoff, editors, Declarative Agent
Languages and Technologies VI, volume 5397 of LNCS,
pages 63-78. Springer, 2008.

[10] N. Oren, M. Luck, and T. J. Norman. Argumentation for
normative reasoning. In Proc. Symp. Behaviour Regulation
in Multi-Agent Systems, pages 55-60, 2008.

[11] N. Oren, S. Panagiotidi, J. Vazquez-Salceda, S. Modgil,

M. Luck, and S. Miles. Towards a formalisation of electronic
contracting environments. In Proc. 12th COIN Workshop,
pages 61-68, 2008.

[12] 1. Porn. Logic of Power. Blackwell Publishers, 1970.

[13] A.S.Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. V. de Velde and J. W. Perram,
editors, Agents Breaking Away, volume 1038 of LNCS, pages
42-55. Springer, 1996.

[14] W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman.
Resolving conflict and inconsistency in norm-regulated
virtual organizations. In Proc. 6th Int. Joint Conf. on
Autonomous Agents and Multiagent Systems, pages 1-8,
2007.

[15] J. Vazquez-Salceda, H. Aldewereld, and F. Dignum. Norms
in multiagent systems: from theory to practice. Computer
Systems: Science & Engineering, 20(4), 2005.

[16] R. Vieira, A.F Moreira, M. Wooldridge, and R. H. Bordini.
On the formal semantics of speech-act based communication
in an agent-oriented programming language. Journal of
Artificial Intelligence Research, 29:221-267, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

